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Water Resources Engineering
Case study of the Parma River fluvial system, Italy
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Flood Control
2255 Monte Carlo experiments (precipitations having return period T = 200 a)
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Flood Control Problem
What is the correct level of protection we need?

Panaro River, 2012 Design return period
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Levee Failure Along the Secchia River, January 2014
Breach loss = 36 x 10° m?, flooded area = 52 km?, damage = EUR 500 million

When the flood calls
You have no home, you have no walls
Peter Gabriel — Here Comes The Flood (Peter Gabriel I, 1977)
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Investigation on Causes of the Levee Failure
Wanted by the Governor of the Regione Emilia-Romagna Vasco Errani

Relazione tecnico-scientifica sulle
cause del collasso dell’argine del fiume
Secchia avvenuto il giorno 19 gennaio
2014 presso la frazione San Matteo

QAGU

Water Resources Research

RESEARCH ARTICLE  Evidence of an emerging levee failure mechanism causing
22015017426 disastrous floods in Italy

Stefano Orlandini?, Giovanni Moretti, and John D. Albertson?

Abstract A leve falure occurred slong the Secchia ive, Norther lay,on 19 January 2014, resuting in
of $500 millon. I o ths fal other fevees In
the region ofasecond Panaro iver, where
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Water Supply for Public, Irrigation, and Hydropower Uses
Cost-benefit analysis of the Armorano reservoir (observed precipitations)
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Water Supply for Public, Irrigation, and Hydropower Uses
Cost-benefit analysis of the Armorano reservoir (observed precipitations)
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Optimal Height of the Dam
Cost-benefit analysis of the Armorano reservoir (observed precipitations)
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Catchment Hydrologic Modeling
The CATHY Model (Camporese, Putti, Paniconi, Orlandini, 2010, WRR)

Distributed modeling Surface-subsurface flow interaction

e,

P atmosphering forcing

-] Th Ja——— surface flow module

surface-subsurface interface

v

- |l«—— subsurface flow module

3-D Richards equation-based subsurface module +
1-D rivulet/channel network diffusion wave surface module
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Overland Flow Phenomenology
(Raudkivi, 1979, p. 170 and 171)

When the rate of rainfall or snowmelt exceeds the interception
requirements and the rate of infiltration, water starts to accumulate on
the surface. At first the excess water collects into the small
depressions and hollows, until the surface detention requirements are
satisfied. After that water begins to move down the slope as a thin
film and tiny streams. This early stage of overland flow is greatly
influenced by surface tension and friction forces. With continuing
rainfall the depth of surface detention and the rate of overland flow
increase, but the paths of the small streams on the surface of the
catchment are still tortuous and full of obstructions. Every small
obstruction causes a delay until the upstream level has risen to
overflow the obstacle or to wash it away. On release a small wave
speeds downstream and merges with another little rivulet. The
merging of more and more of these little streams culminates in the
river which drains the whole catchment in question.
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Overland Flow Modeling

Resistance coefficients remain poorly understood!

@ Governing equations: dynamic, diffusion, and kinematc
wave equations, level pool routing equation

@ Constitutive equations: Gauckler-Manning-Strickler
equation
1

n
reservoir storage and outflow equations
@ Numerical methods: 0-D, 1-D, 2-D / FDM, FEM, and FVM

U= R¥*g}2
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Terrain Analysis

Not only important to describe surface flows!

Definiion

Terrain analysis is the analysis
and interpretation of topographic
features. Such features include
elevation, slope, aspect, plan and
profile curvature, drainage area,
and specific drainage area. The
intention is to build mathematical
abstraction of surface terrain in
order to delineate or stratify
landscapes and create an
understanding of relationships
between hydrological,
geomorphological, and ecological
processes and physical terrain
features.
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The Problem of Terrain Representation
(http://en.wikipedia.org/wiki/Fractal)
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The Problem of Terrain Representation
(http://en.wikipedia.org/wiki/Fractal)
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The Problem of Terrain Representation
(http://en.wikipedia.org/wiki/Fractal)
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The Problem of Terrain Representation
(http:/en.wikipedia.org/wiki/Fractal)
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Slope Lines
(Cayley, 1859, London Edinburgh Dublin Philos. Mag. J. Sci.; Maxwell, 1870,

London Edinburgh Dublin Philos. Mag. J. Sci.)

James Clerk Maxwell On hills and dales
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Skeleton Construction Techniques
(Gold and Snoeyink, 2001, Algorithmica; Moretti and Orlandini, 2008, WRR)

contour line
skeleton stem
skeleton branch
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Skeleton Construction Techniques

(Moretti and Orlandini, 2008, WRR)
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(Jonathan R. Shewchuk, Triangle, http://www.cs.berkeley.edu/~jrs)
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Skeleton Construction Techniques
(Moretti and Orlandini, 2008, WRR)
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A classical flow net is not suited to natural landscapes (Moore and Grayson,
1991, WRR). However, these methods may perhaps be used in the future in
combination with the Gallant and Hutchinson’s (2011, WRR) equations

dA da

— =a — =1-—ka

dv ’ du
These equations lead drainage basin hydrology into continuum mechanics.



Terrain Analysis
0000800

A New Differential Equation!
(Gallant and Hutchinson, 2011, WRR)

WATER RESOURCES RESEARCH, VOL. 47, W05535, doi:10.1029/2009WR008540, 2011

A differential equation for specific catchment area

John C. Gallant' and Michael F. Hutchinson®

Received 20 August 2009; revised 21 February 2011; accepted 28 February 2011; published 25 May 2011

[1] Analysis of the behavior of specific catchment area in a stream tube leads to a simple
nonlinear differential equation describing the rate of change of specific catchment area
along a flow path. The differential equation can be integrated numerically along a

PROCEEDINGS A On the theory of drainage area
rspa.royalsocietypublishing.org for requ larand non-requ lar
points
2 1 23
Research ot S. Bonetti"*, A. D. Bragg' and A. Porporato
Citethic art s 10 "Department of Civil and Environmental Engineering,

/ NC27708, USA
Department of vl and Environmental Engineering, and
3princeton Environmental Istitute, Princeton, NJ 08544, USA

Porporato A, 2018 0nthe theory of drainage
area forregular and non-regular oints. Proc.
R-Soc. A 474: 20170693.

http://dx.doi.org/10.1098/rspa.2017.0693 AP, 0000-0001-9378-207X
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Triangulated Irregular Networks
(lvanov, Vivoni, Bras, Entekhabi, 2004, WRR)

tRIBS model
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Grid Digital Elevation Models
(O’Callaghan and Mark, 1984; Zevenbergen and Thorne, 1987; Quinn et al., 1991;

Tarboton, 1997; Orlandini et al., 2003; Seibert and McGlynn, 2007)
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D4 propagation across adjacent cells is not robust enough.
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Slope lines in grid digital elevation models
D8-LTD method (Orlandini, Moretti, Franchini, Aldighieri, Testa, 2003, WRR)
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Analytical Basis for the D8-LTD Method
(Orlandini, Moretti, Gavioli, 2013, WRR)

WATER RESOURCES RESEARCH, VOL. 50, 526-539, doi:10.1002/2013WR014606, 2014

Analytical basis for determining slope lines in grid digital elevation
models

Stefano Orlandini,' Giovanni Moretti,' and Andrea Gavioli’
Received 19 August 2013 ; revised 2 December 2013 ; accepted 12 December 2013 ; published 22 January 2014.

[1] An analytical basis for the determination of slope lines in grid digital elevation models
is provided by using the D8-LTD method (eight slope directions, least transverse deviation).
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Proof

(Orlandini, Moretti, Gavioli, 2013, WRR)

D8-LTD method

el Let z: R? — R be a C?-function whose
‘W gradient Vz never vanishes. Let po € R? be
£ IENgs] given, and x(t) be the solution of
%, D, oulgz Dy <
SRR X'(t) = =Vz(x(t))

X(t) = Xo

Th(Py-t

with Xo = po. Then, for any ¢ > 0, there
exists n. € Z* such that

Jrem MhCre, n>n.

~Q(py. )
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Numerical Evidence
(Orlandini, Moretti, Gavioli, 2013, WRR)
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Channel Initiation

Terrain Analysis

(Orlandini, Tarolli, Moretti, Dalla Fontana, 2011, WRR)
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Resistance to Flow Along Channel Networks
(Orlandini, 2002, WRR)
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Profile and Planar Overland Flow Dispersion Along Hillslopes

Surface flow hydraulics

Planar dispersion
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fraction of released water
passing through the cell.
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Green is the colour of her kind
quickness of the eye deceives the mind
(Pink Floyd, Green is the Colour, More, 1969)
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How does water move over the land surface?
(Orlandini, Moretti, Corticelli, Santangelo, Capra, Rivola, Albertson, 2012, WRR)
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Observed overland flow patterns
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I’'m coming up on infra-red, there is no running that can hide you,
"Cause | can see in the dark.

I’'m coming up on infra-red, forget your running, | will find you.
(Placebo, Infra-red, Meds, 2006)
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Predicted Propagation Patterns
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Predicted Propagation Patterns
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River Channel Geometry
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Reservoir Geometry
(Fiorentini and Orlandini, 2013, AWR)

Flood control reservoir Lidar survey
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Hydrology-oriented Terrain Analysis
Unstructured Meshes




Surface Flow Propagation
(o] ]

Detailed Surface Flow Propagation
Detail is used only where needed...

test
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Final Remarks
New data and methods are now available!

@ High-resolution (1 m or less) digital elevation models
generated from lidar surveys are increasingly available for
hillslope to continental scale hydrologic modeling.

@ Grid-based digital elevation models are relatively easy to
use numerically.

@ TIN-based digital elevation models are efficient to reduce
the computational burden of hydrologic models.

@ Contour-based digital elevation models are suitable to
mathematical abstraction of land surface topography.

@ There is room for future research in hydrology-oriented
description of terrain analysis.

@ Terrain analysis and surface flow propagation can be
further investigated at UNIMORE.
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