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[1] New methods for automatic delineation of drainage basins from contour elevation
data are presented. As a fundamental preprocessing step, the points defining a set of
contour lines are used to compute the Delaunay triangulation, the Voronoi diagram,
and other structures known in computational geometry as the crust and the skeleton
(or medial axis transform). By exploiting the skeleton extracted from contour lines, a
recursive algorithm is then developed to solve critical topographic structures such as
ridges, saddles, and peaks in a fully automated and accurate manner. Finally, the algorithm
is further extended to deal with the construction of flow nets. Numerical experiments
based on high-accuracy contour elevation data of real terrains show that the
proposed methods are able to process automatically complex topographic structures and
to produce results comparable to those that can be interpreted visually from contour lines.
The gain in accuracy over current state-of-the-art solutions is generally found to be
significant and to increase as the contour interval increases.
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1. Introduction

[2] The drainage basin determines the area which con-
tributes water and sediments to a given channel cross
section and is therefore considered to be the fundamental
unit of study of geomorphological and fluvial processes
[e.g., Leopold et al., 1964, p. 131]. Using a topographic
map, a drainage basin is commonly delineated by searching
upslope the lines intersecting contour lines at right angles
from the endpoints of the draining cross section [Maxwell,
1870]. Lines drawn at right angles to the contour lines are
called slope lines and can be either flow lines (describing
the gravity-driven movement of water and sediments)
or drainage divides (separating one drainage basin from
another). In delineating drainage basins, flow lines are
generally drawn so as to connect the draining cross section
endpoints to the closest ridges and the drainage divide is
drawn along ridges, saddles, and peaks. As an extension of
the drainage basin concept, flow nets have been developed
to allow a distributed description of gravity-driven trans-
port processes across a drainage basin [e.g., Onstad and
Brakensiek, 1968; O’Loughlin, 1986; Moore et al., 1988].
A flow net can be derived by partitioning the drainage
basin in a number of elements, each of them being formed
by an upper and lower contour segment (for the top and
bottom sides of the element) and two flow lines connecting
the upper and lower contour lines (for the left and right
sides of the element). These flow nets offer, at least
in principle, a series of advantages over more efficient
and straightforward digital elevation models (e.g., gridded

(regular network) or triangulated irregular network (TIN)
digital elevation models) since they explicitly reproduce the
way in which water and sediments flow on the land
surface.
[3] Several studies have been carried out to improve the

accuracy and the degree of automation in the delineation of
drainage basins and construction of flow nets. In the
pioneering work by Onstad and Brakensiek [1968], slope
lines were specified manually. O’Loughlin [1986] first
proposed an automated, robust computation of slope lines,
but he did not organize them into a flow net. Moore and
Grayson [1991] promoted the potential of flow nets in
catchment hydrology, but their automated algorithm for
flow net construction was not robust as it required arbitrary
adjustment of the boundary in order to operate. Dawes and
Short [1994] advanced the treatment of critical points such
as peaks and saddles arguing that this is an important task
for landscape description. Maunder [1999] strived to make
the process of partitioning a catchment into contour-based
elements as simple and automated as possible. Menduni and
Riboni [2000] and Menduni et al. [2002] emphasized the
role of the drainage network in contour-based partitioning
of a drainage basin. In fact, all these methods are still
semiautomated since they require user-specified procedures
to identify and solve accurately some critical topographic
structures that may be found in complex terrains. The
deficiency of current methods for the automatic delineation
of drainage basins and the construction of flow nets, as well
as the strategy adopted to remedy this deficiency, are out-
lined below, after introducing some necessary concepts on
the determination of flow lines and drainage divides.
[4] As mentioned above, slope lines (either flow lines or

drainage divides) are lines drawn so as to be everywhere at
right angles to the contour lines. A curved slope line
segment between two adjacent contour lines may therefore
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be drawn in such a way as to be perpendicular to both the
upper and lower contour lines. However, this curved slope
line segment is not entirely defined, since the morphology
of the terrain lying within two adjacent contour lines is
unknown, and it must be inferred from the geometry of
contour lines. When drawing a curved slope line segment
manually, human discernment is used to identify the path
that is most likely followed by an imaginary drop of water
flowing from the upper contour line to the lower contour
line. On the other hand, when slope lines are drawn using a
computer program, no inference on the morphology of the
terrain lying within adjacent contour lines is normally made.
Moreover, a curved slope line segment between two adja-
cent contour lines is approximated by a (single) straight line
segment, which is generally unable to satisfy perpendicu-
larity to both contour lines. As noted by Maxwell [1870]
and emphasized by Dawes and Short [1994], in determining
ridge lines by searching successively from one contour line
to the next, there is a theoretical necessity to consider the
minimum distance from points lying on the originating
contour line to the upper contour line, by searching upslope
the (perpendicular) intersection with the upper contour line,
whereas flow lines should be calculated and confluences
located by ‘‘minimum distance searching downslope.’’
However, as emphasized by Maunder [1999], ridges, sad-
dles, and peaks remains critical topographic structures since
large errors may be made when processing these structures
even by using Maxwell’s [1870] prescriptions, resulting in
intersections between adjacent flow lines, flow lines inter-
secting contour lines at nonright angles, or flow lines that
cross the same contour line more than once. These large
errors make the automatic solution of complex ridges,
saddles, and peaks inaccurate or impossible in most cases,
especially when coarse resolution elevation data are used
[Dawes and Short, 1994; Maunder, 1999].
[5] The deficiency of current methods that may prevent

the accurate and automatic determination of flow lines and
drainage divides is ascribed here to the inability of a (single)
straight line segment (used to approximate slope lines
between adjacent contour lines) to be everywhere at right
angles to the contour lines, and, more generally, to the
inability of these methods to make inferences on the most
plausible morphology of the terrain lying within adjacent
contour lines from the set of contour lines considered as a
whole. The strategy investigated in this study to remedy this
deficiency is based on the application of skeleton construc-
tion techniques to contour elevation data. The skeleton (or
medial axis transform) of a curve defined by a set of sample
points is a geometric structure that can be derived from the
Delaunay triangulation and the Voronoi diagram (of this set
of sample points), and is fairly well known in computational
geometry, computer graphics, and computer vision [Blum,
1967; Kirkpatrick and Radke, 1988; Amenta et al., 1998;
Fabbri et al., 2002]. Skeleton construction techniques have
recently been applied in terrain modeling to extract accurate
TIN from contour elevation data [Gold, 1999; Thibault and
Gold, 2000; Gold and Snoeyink, 2001; Dakowicz and Gold,
2003]. The purpose of this investigation is to determine
whether the skeleton extracted from contour lines allows for
morphological information implicitly present in these con-
tour lines, and normally recognized by human observers, to
be explicitly revealed and correctly processed by a computer

program, so that critical topographic structures such as
ridges, saddles, and peaks can be identified and automati-
cally treated for the delineation of drainage basins and the
construction of flow nets.

2. Methods

[6] The methods developed in this paper employ funda-
mental constructs that are known in computational geome-
try as the Delaunay triangulation, the Voronoi diagram, the
crust, and the skeleton (or medial axis transform) [Voronoi,
1907; Delaunay, 1934; Kirkpatrick and Radke, 1988;
Amenta et al., 1998]. The definitions of these geometric
constructs are given in section 2.1. The skeleton extraction
from a set of contour lines is described in section 2.2,
whereas the use of this skeleton for the delineation of
drainage basins is presented in section 2.3. Section 2.4
shows how methods can be extended to allow the construc-
tion of a flow net. Practical aspects are finally reported in
section 2.5.

2.1. Fundamental Geometric Constructs

[7] The definitions of Delaunay triangulation, Voronoi
diagram, crust, and skeleton are illustrated in Figure 1. A
Delaunay triangulation of a set of points in the plane (P1,
P2, . . . in Figure 1a) is a triangulation (of this set of points)
with the property that no point in the set of points falls
inside the circumcircle of any triangle (circle which passes
through all the three vertices of that triangle) in the
triangulation. A Voronoi diagram of a set of points in the
plane (P1, P2, . . . in Figure 1a) is a subdivision of the plane
into polygonal regions (some of which may be infinite),
where each region is that set of points closer to some input
point than to any other input point. The Voronoi diagram is
the geometric dual of the Delaunay triangulation. The
vertices of Voronoi diagrams (V1, V2, . . . in Figure 1a) are
the centers of circumcircles associated to Delaunay trian-
gles. The crust and the skeleton of a set of points can be
computed on the basis of the related Delaunay triangulation
and Voronoi diagram. A Delaunay edge (P1P2 in Figure 1b)
belongs to the crust when a circle exists through its two
endpoints (circle in dashed line in Figure 1b) that does not
contain either of its associated Voronoi vertices (V1 and V2

in Figure 1b). If this condition is not met (the smallest circle
through P1 and P2 drawn in dashed line in Figure 1c, as well
as any other circle, does not exclude both the associated
Voronoi vertices V1 and V2), then the corresponding Voronoi
edge (V1V2 in Figure 1c) belongs to the skeleton.
[8] As suggested by Gold [1999], crust and skeleton

elements can be determined by performing a simple incircle
test applied to each Delaunay/Voronoi edge pair. A circle
passing through the endpoints of the Delaunay edges (P1

and P2 in Figures 1b and 1c) and the closest Voronoi vertex
(V1 in Figures 1b and 1c) is drawn (circles in solid line in
Figures 1b and 1c) and a check is made to assess whether
the second Voronoi vertex is inside the circle. A line
segment which connects two Delaunay triangle vertices
(P1 and P2 in Figure 1b) belongs to the crust if by drawing
a circle (circle in solid line in Figure 1b) through them and a
corresponding Voronoi vertex (V1 in Figures 1b), the circle
does not include the second Voronoi vertex (V2 in Figure 1b).
A line segment which connects two Voronoi vertices (V1

and V2 in Figure 1c) belongs to the skeleton if the circle
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(circle in solid line in Figure 1c) through one of them (V1 in
Figure 1c) and the two corresponding Delaunay triangle
vertices (P1 and P2 in Figure 1c) also include the second
one (V2 in Figure 1c).
[9] Amenta et al. [1998] showed in their seminal study

that the crust and the skeleton extracted from a set of sample
points lying on a curve can be used to reconstruct an
approximation of this curve. The procedure suggested by
Amenta et al. [1998] is illustrated in Figures 2a–2c in the
simple case of a set of sample points lying on the border of a
rectangle. This set of sample points (Figure 2a) is used to
compute the Delaunay triangulation and the Voronoi dia-
gram (Figure 2b), which allow for the extraction of a crust
that is found to reconstruct the border of the rectangle
(Figure 2c). Clearly, no algorithm for the computation of
the crust can reconstruct any curve from any set of sample
points and some condition on the quality of the set of
sample points is needed. Amenta et al. [1998] found that the
reconstruction of a curve is guaranteed if the distance from
any point of the curve to the nearest sample point is less
than or equal to 0.252 times the distance between this point
(of the curve) to the nearest point of the computed skeleton.
The concepts illustrated in this section can be applied to

closed curves such as that considered in Figures 2a–2c, or
to a set of open curves such as that shown in Figures 2d–2f.

2.2. Skeleton Extraction From Contour Lines

[10] As first noted by Gold [1999], the theory developed
by Amenta et al. [1998] can be applied, although from a
different perspective, to a set of contour lines exhibiting the
morphology of a terrain. While Amenta et al. [1998] were
mostly interested in the crust as a means for reconstructing a
curve from a given set of sample points, in terrain analysis
the curves, namely the contour lines, are given (i.e., they
need not to be reconstructed) and the attention is rather
focused on the skeleton of the contour lines as a possible
means for reconstructing the most plausible morphology of
the terrain lying within adjacent contour lines or within a
closed contour line. The simple cases shown in Figure 2
may be used as examples to explain the rationale of this
strategy. Assuming that the rectangle’s border is a contour
line defined by a set of points (Figure 2a), it can be observed
that the crust reconstructs the contour line and the skeleton
reveals a plausible morphology of the terrain within this
contour line (Figure 2c). If the contour line contains a peak
(and not a depression), then the skeleton provides the ridge
lines for the terrain lying within this contour line, revealing
a plausible ‘‘hipped roof geometry’’ of the peak. The
skeleton in the central part of the rectangle is generated
from opposite (parallel) rectangle sides and represents in
this case the main ridge of the roof, whereas the skeleton in
the regions near the corners of the rectangle is generated
from contiguous (markedly nonparallel) rectangle sides and
represents in this case the secondary ridges running along
the hips of the roof. It is noted here that the skeleton may be
obtained by connecting Voronoi vertices lying outside the
associated Delaunay triangles (see, for instance, the Delau-
nay triangle P1P2P3 and the related Voronoi vertex V in
Figure 2b).
[11] The open curves defined by a set of points as shown

in Figure 2d are assumed here to represent two contour lines
representing different elevations, with the higher elevation
represented by the (straight) top contour line. As shown in
Figures 2e and 2f, the skeleton resulting from Delaunay
triangles with vertices distributed over both the two contour
lines provides a sort of intermediate contour line, whereas
the skeleton resulting from Delaunay triangles with all
vertices on the same contour line provides a ridge line.
The simple cases shown in Figure 2 can be used to illustrate
a classification of skeleton lines computed from points
defining contour lines that is crucial for the development
of the methods presented in this study. A skeleton line
generated from a set of points lying on contour lines
representing different elevations is a skeleton stem (line
labeled ‘‘skeleton stem’’ in Figure 2f), whereas a skeleton
line generated from a set of points lying on the same
contour line or on two contour lines representing the same
elevation is a skeleton branch (lines labeled ‘‘skeleton
branch’’ in Figures 2c and 2f). It is noted here that Delaunay
triangles with all three vertices lying on the same contour
line, which are problematic cases when standard (TIN-
based) methods for the description of terrain morphology
are used, do not constitute a critical point when skeleton
construction techniques are used, and are rather crucial to
determine skeleton branches revealing important morpho-
logical features of the terrain [Gold, 1999]. The theory

Figure 1. Definition of the fundamental geometric con-
structs used by the proposed method: (a) Delaunay
triangulation andVoronoi diagram, (b) crust, and (c) skeleton.
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developed by Amenta et al. [1998] ensures that, if contour
lines are defined by a sufficiently dense set of points,
the associated crust reconstructs these contour lines and
the associated skeleton reveals a plausible description of the
morphology of the terrain lying within the contour lines.
The issues about the density of sample points introduced in
section 2.1 are not critical for the problem addressed in this
study since contour lines are given and a sufficiently dense
set of points lying on these contour lines may always be
generated, if necessary, to meet the well-defined require-
ments provided by Amenta et al. [1998].
[12] Further details on the skeleton extracted from a real set

of contour lines can be provided by referring to the cases
shown in Figure 3. As shown in Figure 3a, between adjacent
contour lines representing different elevations a skeleton
stem is always generated and provides a sort of intermediate
contour line (lines labeled ‘‘skeleton stem’’). Where contour
lines are markedly nonstraight, the skeleton is branched and
skeleton branches (lines labeled ‘‘skeleton branch’’) gener-
ally form a tree structure that can be ordered in such a way
that the first-order skeleton branches are those which connect
the skeleton stem to the closest contour line (skeleton branch
labeled ‘‘1’’), the second-order skeleton branches are those
which connect first-order skeleton branches to the same
contour line (skeleton branches labeled ‘‘2’’), and similarly
for higher-order skeleton branches. It is specified here that in
this study the endpoint of each skeleton branch is connected

to the closest contour line in order to provide a continuous
system formed by the contour lines and the related skeleton
structure. The skeleton branches reveal plausible morpho-
logic features such as minor ridges or valleys as described in
the following paragraphs.
[13] A ridge connecting two contour lines representing

higher elevations indicates a saddle (line segments SL
(n)SR

(n) in
Figures 3b and 3c). As shown in Figures 3b and 3c, a first-
order skeleton branch that has both the endpoints belonging
to skeleton stems (and neither of them belonging to the
contour line) is used to identify and characterize a saddle.
Two types of saddle can be found: type 1 saddles are those
identified by a skeleton branch with both the endpoints
lying on the same skeleton stem (see the small inset below
the label ‘‘type 1 saddle’’ in Figure 3b), whereas type 2
saddles are those identified by a skeleton branch with
endpoints lying on different skeleton stems (see the small
inset below the label ‘‘type 2 saddle’’ in Figure 3c). In
practice, the two different types of saddles are distinguished
by considering the Delaunay triangles associated to the
endpoints of the skeleton branch that identifies and charac-
terizes the saddle. A type 1 or type 2 saddle is identified
depending on whether two (out of three) vertices of these
triangles lie on the upper (e.g., triangle P1P2P3 in Figure 3b)
or lower (e.g., triangle P1P2P3 in Figure 3c) contour lines,
respectively. It is noted here that the midpoint of the saddle
branch used to identify and characterize the type 1 and

Figure 2. Computation of the crust and the skeleton from a set of (sample) points lying (a, b, and c) on
the border of a rectangle and (d, e, and f) on two adjacent open curves: set of sample points (Figures 2a
and 2d), Delaunay triangulation and Voronoi diagram (Figures 2b and 2e), and crust and skeleton
(Figures 2c and 2f).
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Figure 3. Essential features of the skeleton extracted from contour lines and of the drainage basin
delineation algorithm developed by exploiting this skeleton: (a) draining line segment connecting two
assigned points and upslope searching algorithm, (b) type 1 saddle identification and solution, (c) type 2
saddle identification and solution, (d) peak identification and closure of the drainage basin, (e) group of
peaks lying between adjacent contour lines, and (f) group of depressions lying between adjacent contour
lines. The flow net for approximately the same area as that shown in Figures 3e and 3f is given in Figure 6b.
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type 2 saddles determines the saddle point. In type 1
saddles, the characteristic saddle branch curves down and
is used to determine a transverse saddle line SL

(n)SR
(n) which

curves up. In type 2 saddles, the characteristic saddle branch
curves up and belongs to the saddle line SL

(n)SR
(n) which

clearly curves up as well.
[14] A region lying within a closed contour line (with no

enclosed contour lines) indicates a peak or a depression
(Figure 3d). The closed contour line describes a peak or a
depression depending on whether the surrounding contour
lines represent lower or higher elevations, respectively. As
shown in Figure 3d, the skeleton contained within the closed
contour line is used to identify and characterize the peak or
depression. The skeleton stem is not present and the
skeleton branches are ordered using a system similar to that
introduced above. The first-order skeleton branch (skeleton
branch labeled ‘‘1’’) connects two points of the closed
contour line (PR

(c) and KR
(c)), second-order skeleton branches

(skeleton branches labeled ‘‘2’’) are those which connect the
first-order skeleton branch to the closed contour line, third-
order skeleton branches (skeleton branches labeled ‘‘3’’) are
those which connect the second-order skeleton branches to
the closed contour line, and similarly for higher-order
skeleton branches. The skeleton branches lying within a
closed contour line describing a peak or a depression reveal
a system of ridge lines or flow lines, respectively.
[15] When a complex terrain is represented by a set of

contour lines having a contour interval that is too large to
yield a detailed description of the terrain morphology,
topographic structures composed of groups of peaks and/
or depressions lying between adjacent contour lines may be
observed (Figures 3e and 3f). As shown in Figures 3e and
3f, in the region lying within the adjacent open contour lines
representing the elevations 345 m asl (above sea level) and
350 m asl, the closed contour lines representing the eleva-
tion 350 m asl (those labeled P1, P2, and P3 in Figure 3e)
describe a group of peaks since they represent an elevation
that is equal to the elevation of the upper contour line
(350 m asl), whereas the closed contour lines representing
the elevation 345m asl (those labeledD1 andD2 in Figure 3f)
describe a group of depressions since they represent and
elevation that is equal to the elevation of the lower contour
line (345 m asl). The cases under consideration can be
identified and characterized using the skeleton of contour
lines. However, the skeleton elements need to be analyzed
and the closed contour lines representing peaks or depres-
sions need to be connected to the upper or the lower contour
line, respectively, in order to provide a well-defined, plausi-
ble characterization of the morphology of the terrain lying
within the adjacent contour lines. Although the group of
peaks and the group of depressions are solved using the same
methods, these two cases are dealt with separately in the
following paragraphs.
[16] As shown in Figure 3e, the topographic structure

composed of the open contour line representing the eleva-
tion 350 m asl and of the closed contour lines representing
the elevation 350 m asl (peaks P1, P2, and P3) can be
recognized from the skeleton branches labeled ‘‘character-
istic branch’’ (B1B2, B2B3, B2B4, B4B5, and B4B6). These
characteristic branches are derived from Delaunay edges
connecting points with the same elevation (as occurs for all
skeleton branches) and lying on different contour lines (as

occurs for the saddle branches shown in Figures 3b and 3c),
but are characteristic since at least one of their endpoints lies
on a skeleton branch (and not both their endpoints lie on
one or two skeleton stems as occurs for the type 1 and type 2
saddle branches shown in Figures 3b and 3c, respectively).
Each closed contour line describing a peak may be
connected to the open contour line on the basis of two
simple rules: (1) the connection may be direct or achieved
through the other closed contour lines describing the peaks,
and (2) among the possible connections, that displaying the
minimum distance is chosen (lines labeled ‘‘connecting
line’’). In the example shown in Figure 3e, the connecting
lines are those intersecting the characteristic branches B2B3,
B4B5, and B4B6. The morphology of the group of peaks is
well defined by the characteristic branches and the obtained
connecting lines. It is noted that (1) the intersection
between a connecting line and the related characteristic
branch defines a saddle point, (2) a connecting line curves
up and represents a saddle line connecting two higher
elevations (350 m asl), and (3) a characteristic branch
intersected by a connecting line curves down and defines
two plausible flow paths originating at the saddle point and
extending along the two opposite sides of the saddle. A
characteristic branch that is not intersected by a connecting
line (B1B2 and B2B4) does not identify a saddle but rather a
simple flow path.
[17] As shown in Figure 3f, the topographic structure

composed of the open contour line representing the eleva-
tion 345 m asl and of the closed contour lines representing
the elevation 345 m asl and describing the depressions D1

and D2 can be recognized from the skeleton branches
labeled ‘‘characteristic branch’’ (B1B2, B2B3, and B2B4).
These characteristic branches are determined as described
above when dealing with the case of the group of peaks. In
the example shown in Figure 3f, the connecting lines are
those intersecting the characteristic branches B2B3 and
B2B4, and are determined as described above when dealing
with the case of the group of peaks. In this case, however, it
is noted that (1) the intersection between a connecting line
and the related characteristic branch defines a saddle point,
(2) a characteristic branch intersected by a connecting line
curves up and represents a saddle line connecting two
higher elevations, and (3) a connecting line curves down
and defines two plausible flow paths originating at the
saddle point and extending along the two opposite sides
of the saddle. A characteristic branch that is not intersected
by a connecting line (B1B2) does not identify a saddle but
rather a simple ridge line.

2.3. Drainage Basin Delineation

[18] A recursive algorithm for the delineation of drainage
basins that exploits the skeleton computed from a set of
contour lines is presented in this section. The essential
features of this algorithm are illustrated by considering the
topographic structures shown in Figure 3. The real case
applications shown in Figures 4 and 5 are also used to
provide some illustrative examples of the behavior of the
proposed method with respect to methods currently in use.
These real case applications will be described in more detail
in section 3. The algorithm constructs the drainage divide
from two assigned points (PL

(a), PR
(a) in Figure 3a) for each

pair of adjacent contour lines working from the lowest to the
highest contour line. Subscripts ‘‘L’’ and ‘‘R’’ are used in
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this context to denote the ‘‘left’’ and ‘‘right’’ relative
locations of two points for an observer located within the
drainage basin and looking upstream. Superscripts ‘‘(a),’’
‘‘(c),’’ and ‘‘(n)’’ are used to denote the ‘‘assigned,’’
‘‘current,’’ and ‘‘next’’ points, respectively, in the step-by-
step determination of the drainage divide. A drainage divide
element between two adjacent contour lines (e.g., element
PR
(c)KR

(c)PR
(n) in Figure 3a) is normally formed by a couple of

contiguous straight line segments (e.g., PR
(c)KR

(c) and KR
(c)PR

(n)

in Figure 3a) joined at a point lying on the skeleton stem
(e.g., KR

(c) in Figure 3a), and oriented in such a way as to
intersect both the lower and upper contour lines at right
angles (e.g., at points PR

(c) and PR
(n), respectively, in Figure 3a).

This capability of the proposed method, highlighted in the
bottom inset of Figure 4, allows to remedy a major deficiency
of current methods mentioned in section 1 and highlighted in
the bottom inset of Figure 5.
[19] The assigned points (PL

(a), PR
(a) in Figure 3a) can be

chosen arbitrarily along a selected contour line or in the
region lying within two adjacent contour lines. The divide
segments originating at the assigned points (PL

(a), PR
(a)) are

identified by distinguishing the cases in which these
assigned points lie immediately downslope from a contour
or a skeleton stem line. In the first case (shown in Figure 3a),
from the assigned points the lines perpendicular to the upper
contour line are computed and the points of intersection
(PL

(c), PR
(c)) determined. In the second case (not shown in

Figure 3a), the lines perpendicular to the lower contour line
and passing through the assigned points are computed and
the points of intersection between these lines and the upper
skeleton stem line (KL

(c), KR
(c)) are determined. From these

skeleton points the lines perpendicular to the upper contour
line are searched upslope and the points of intersection (PL

(c),
PR
(c)) determined. Having found the current points (PL

(c), PR
(c))

on the first contour line lying upward from the assigned
points (PL

(a), PR
(a)), the recursive algorithm can initiate.

[20] The divide elements connecting two adjacent contour
lines are determined in two phases. In the first phase, the
lines perpendicular to the lower contour line from the
current points (PL

(c), PR
(c) in Figure 3a) are computed and

the points of intersection with the skeleton stem (KL
(c), KR

(c) in
Figure 3a) determined. In some specific cases, where this
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Figure 4. Delineation of drainage basins in the Ca’ Lita area (44�2703100N, 10�3803800E) using the
proposed method. The essential features of the delineation method are shown in the insets. The three
drainage basins labeled DB1, DB2, and DB3 are used to evaluate the method numerically as described in
section 3.2. The contour interval is 1 m. The datum is mean sea level.
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line meets a skeleton branch (before the intersection with
the skeleton stem), the divide is forced to follow this
skeleton branch, and eventually other lower-order skeleton
branches until the skeleton stem is reached. In the second
phase, the minimum distances from the points lying on the
skeleton stem (KL

(c), KR
(c) in Figure 3a) to the upper contour

line is computed and the points of intersection (PL
(n), PR

(n) in
Figure 3a) are determined. This ‘‘minimum distance search-
ing upslope’’ criterion normally allows that the drainage
divide intersects the upper contour line at right angle. At
some singular points the upper contour line may not be
smooth (e.g., it may display a cusps). The algorithm
(automatically) identify these singular points and use them
to delineate the drainage basin if they satisfy the criterion of
minimum distance (although with no intersection at right
angle). When the specific cases mentioned above are not
met, the proposed method ensures that upslope and down-
slope searching will provide the same results.
[21] As mentioned above, the delineation of the drainage

basin divide is carried out step by step, using at each step
the current points (PL

(c), PR
(c)) to determine the next points

(PL
(n),PR

(n)). The procedure continues as long as the points
KL
(c), KR

(c) lying on the skeleton stem upward from the current
points (PL

(c), PR
(c)) do not coincide or, in other terms, until a

peak is found. If the two next points are found to lie on
different contour lines, a saddle identification procedure is
applied. If a type 1 saddle is met (Figure 3b), the midpoint
(BM) of the associated skeleton branch is determined and
the two closest next points (SL

(n), SR
(n)) among those of the

upper contour lines are searched. If a type 2 saddle is met
(Figure 3c), the endpoints (BL, BR) of the associated
skeleton branch are considered and the two closest next
points (SL

(n), SR
(n)) among those of the upper contour lines are

searched. In both type 1 and type 2 saddle cases, two pairs
of points are obtained. One pair, conventionally denoted as
the left one (PL

(n), SL
(n) in Figures 3b and 3c) are considered as

the input for a new call of the recursive procedure. This call
terminates when a peak is found. As shown in Figure 3d, a
peak is normally described by a closed contour line with no
enclosed contour lines and by an ordered set of skeleton
branches within the closed contour line. From each of the
current points (PL

(c), PR
(c)), the set of skeleton branches is

Figure 5. Delineation of drainage basins in the Ca’ Lita area (44�2703100N, 10�3803800E) using the
current state-of-the-art method. The essential features of the delineation method are shown in the insets.
The three drainage basins labeled DB1, DB2, and DB3 are used to evaluate the method numerically as
described in section 3.2. The contour interval is 1 m. The datum is mean sea level.
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traveled in the direction of descending skeleton branch order
(filled and empty circles in Figure 3d) until the first endpoint
of the first-order skeleton branch is reached (point KL

(c) = KR
(c)

in Figure 3d). The points belonging to both the left and right
parts of the basin divide within the closed contour line
(empty circles in Figure 3d) are then discarded. It is
specified here that the overlap of point PR

(c) with the end
of the first-order skeleton branch, as well as the overlap of
point PL

(c) with the end of the fourth-order skeleton branch in
Figures 3d, are coincidental. In the general case, these points
may belong to any point of the closed contour line. From
these points the lines perpendicular to the contour line are
computed and the points of intersection with the skeleton
branches lying within the contour line are determined. Once
the drainage divide through the left points (PL

(n), SL
(n)) is

solved, the algorithm for the delineation of the whole
drainage basin continues by considering the right pair of
points (SR

(n), PR
(n) in Figures 3b and 3c). When a new saddle is

found, a new saddle solution routine is recursively called.
An illustrative example of the accuracy with which critical
topographic structures such as ridges, saddles, and peaks are
solved by the proposed method is given in the top inset of
Figure 4, whereas the top inset of Figure 5 shows a less
accurate solution of the same problem obtained by using the
current state-of-the-art methods.
[22] The following pseudocode (starting with the current

points of the first contour line lying upslope from the
assigned points as described in the first paragraph of this
section) gives the logic of the algorithm:

Procedure DIVIDE(PL
(c), PR

(c))

Require: Contour lines, skeleton, points (PL
(c), PR

(c))

Ensure: Drainage divide through the two points (PL
(c), PR

(c))

KL
(c) = point of the skeleton searched upslope PL

(c)

KR
(c) = point of the skeleton searched upslope PR

(c)

while KL
(c) 6¼ KR

(c) do

{Until a PEAK is found:}

PL
(n) = point of the contour line searched upslope KL

(c)

PR
(n) = point of the contour line searched upslope KR

(c)

if ID of the contour line containing PL
(n) 6¼ ID of the

contour line containing PR
(n) then

{A SADDLE is found and must be treated:}

if a type 1 saddle is identified then

SL
(n) = point of the contour line containing PL

(n)

closest to the midpoint BM of the associated

skeleton branch

SR
(n) = point of the contour line containing PR

(n)

closest to the midpoint BM of the associated

skeleton branch

else if a type 2 saddle is identified then

SL
(n) = point of the contour line containing PL

(n)

closest to the left endpoint BL of the associated

skeleton branch

SR
(n) = point of the contour line containing PR

(n)

closest to the right endpoint BR of the

associated skeleton branch

end if

call DIVIDE(PL
(n), SL

(n))

PL
(n)  SR

(n)

end if

PL
(c) PL

(n)

PR
(c) PR

(n)

Figure 6. Automatically constructed flow nets for two portions of the Ca’ Lita area showing (a) the
solution of critical topographic structures such as ridges, saddles, and peaks (44�2705600N, 10�3802200E)
and (b) the solution of a group of peaks and/or depressions (44�2701800N, 10�3801600E). The contour
interval is 1 m in Figure 6a and 5 m in Figure 6b. The datum is mean sea level.

W05403 MORETTI AND ORLANDINI: AUTOMATIC DELINEATION OF DRAINAGE BASINS

9 of 16

W05403



KL
(c) = point of the skeleton searched upslope PL

(c)

KR
(c) = point of the skeleton searched upslope PR

(c)

end while

return

[23] To summarize, the calculation is initiated by deter-
mining the first couple of current points on the contour line
located immediately upward from the assigned points and
calling the routine DIVIDE. Then, the routine DIVIDE is
recursively called whenever a SADDLE is found. Each call
terminates when skeleton points are found to be coincident,
generally when a PEAK is reached.

2.4. Flow Net Construction

[24] The methods presented in sections 2.2 and 2.3 can be
readily applied to construct a flow net from any assigned set
of contour lines. Illustrative examples of flow net construc-
tion are reported in Figure 6. Figure 6a shows the solution
of critical topographic structures such as ridges, saddles,
and peaks represented by contour elevation data having a
sufficiently fine resolution to ensure a detailed description
of the terrain morphology, whereas Figure 6b shows the
solution of groups of peaks and/or depressions displayed by
contour elevation data having an insufficiently fine resolution
to ensure a detailed description of the terrain morphology.
The example provided in Figure 6a is especially intended to
highlight the full automation in the analysis of complex
contour elevation data allowed by skeleton construction
techniques. The ordering of skeleton elements described in
section 2.2 allows skeleton stems (which enrich the infor-
mation provided by contour lines) and skeleton branches
(which reveal topographic structures such as valleys, ridges,
saddles, and peaks) to be recognized and intersected at right
angles or followed, respectively, by flow lines and drainage
divides. The methodology described by Gallant and Wilson
[2000] can be applied to solve the case shown in Figure 6a.
Regularly spaced flow lines are constructed for each pair of
adjacent contour lines working form the lowest to the highest
contour line. A user-specified distance controls the spacing
of the flow lines and flow lines are placed at that specified
distance on the first (lowest) contour line. On subsequent
higher contour lines, the upper ends of the flow lines from
the lower contour line are used as the start points of the next
set of flow lines provided that they are neither too close nor
too far apart. As suggested byMoore et al. [1988] andMoore
and Grayson [1991], a new line is inserted if the distance
between the existing start points is more than 1.3 times the
user-specified distance, whereas a line is terminated if the
start points are less than half the user-specified distance.
[25] The methodology described by Moore et al. [1988],

Moore and Grayson [1991], and Gallant and Wilson [2000]
is extended here in order to allow groups of peaks and/or
depressions such as those considered in section 2.2 and
shown in Figures 3e and 3f to be correctly processed during
the construction of a flow net. Using the methods described
in section 2.2, neighboring contour lines representing the
same elevation are connected to obtain systems of contour
lines that can be assimilated to single contour lines. Figure 3e
shows how the closed contour lines representing the
elevation 350 m asl (peaks P1, P2, and P3) are connected
to the open contour line representing the same elevation of

350 m asl, whereas Figure 3f shows how the closed contour
lines representing the elevation 345 m asl (depressions D1

and D2) are connected to the open contour line representing
the same elevation of 345 m asl. The way in which the
obtained systems of contour lines are traveled during the
construction of a flow net is indicated by the arrows reported
in Figures 3e and 3f, and will be further defined in section
2.5. The flow net computed from approximately the same
contour elevation data as those shown in Figures 3e and 3f is
given in Figure 6b. The construction of this flow net is based
on the methodology described above and on a recursive
algorithm developed to perform flow line insertions or
terminations along all the elemental systems of contour lines
(representing the same elevation) that may be encountered
when considering real contour elevation data.
[26] The recursive algorithm is described by referring to

the flow net element S1E1E2S2 shown in Figure 6b, which is
formed by two contour line segments (S1S2, E1E2) and two
flow line segments (S1E1, S2E2). The algorithm starts by
traveling the contour line containing the point E1 (end of the
flow line S1E1) in the direction indicated by the arrows
reported in Figures 3e, 3f, and 6b in order to find the point
E2 (end of the flow line S2E2). If E2 is found, then flow lines
are inserted or terminated along the contour line segment
E1E2 following the rules reported above. If a connecting line
is found at a given joint point (e.g., point J in Figure 6b),
then flow lines are inserted or terminated along the contour
line segment (e.g., E1J in Figure 6b) before this joint point
and the connecting line is traveled until the point of
intersection (e.g., point C in Figure 6b) with the connected
contour line is found. Then, the algorithm is recursively
called to process the contour line system (e.g., CE2 in
Figure 6b) lying between this point of intersection and E2.
All the recursive calls are closed when E2 is found and flow
lines are inserted or terminated along the contour line
segment lying between the end of the last-considered
connecting line and E2. This recursive algorithm allows
the processing of all elemental systems of contour lines,
including simple contour line segments, complex systems of
peaks (e.g., P1, P2, and P3 in Figure 6b), and complex
systems of depressions (e.g., D1 and D2 in Figure 6b).
[27] The following pseudocode gives the logic of the

algorithm:

Procedure FLOWLINES(E1, E2)

Require: Contour lines, connecting lines, points (E1, E2)

Ensure: Insertions or terminations of flow lines between

E1 and E2

CID = ID of the contour line containing E1

while E2 is not found do

Travel all elements of the contour line CID

Accumulate the distance along the contour line CID

if a connecting line is found then

Perform insertions or terminations on the contour

line CID

Travel the connecting line until the connected

contour line is found

C = point of intersection between the connecting
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line and the connected contour line

call FLOWLINES(C, E2)

end if

end while

Perform insertions or terminations on the contour line CID

return

2.5. Practical Aspects

[28] In order to allow for easy programming and fast
execution of the operations described in sections 2.2–2.4,
input (contour elevation) data are arranged in such a way as
to ensure that the points defining a contour line can be
found in the order in which they appear to an observer
moving along the contour line in the direction that keeps the
upper adjacent contour line to the left (and the lower
adjacent contour line to the right). This helps determine
the relative location of a point with respect to other points
lying on the same or on a different contour line.
[29] A practical method for ensuring a priori that the

points defining the contour lines yield an accurate skeleton
construction is derived from the well-defined condition
reported in section 2.1 (which cannot be applied directly
since it requires the skeleton itself). By observing that the
skeleton stems and the skeleton branches approximately lay
halfway between adjacent contour lines or between different
portions of a (markedly nonstraight) contour line, respec-
tively, the distance between a point lying on a contour line
and the nearest point of the skeleton (used in the condition
reported in section 2.1) may be surrogated by half the
distance between the point lying on the contour line and
the nearest point lying on adjacent contour lines or on other
portions of the same (markedly nonstraight) contour line.
Under this approximation, for each line segment defining a
contour line.
[30] 1. The perpendiculars from the line segment inter-

secting line segments of the same and of adjacent contour
lines are determined and distances are computed.
[31] 2. The perpendiculars from the line segments of the

same and of adjacent contour lines intersecting the con-
sidered line segment are determined and distances are
computed.
[32] 3. The spacing between the endpoints of the line

segment is verified to be less than or equal to 0.125 times
the minimum distance among those computed in the previ-
ous steps and, if necessary, new points are inserted inside
the line segment in order to meet this requirement.
[33] Although additional work is needed to improve the

method’s ability to handle all possible cases in an accurate
manner, the method is helpful to determine a priori a
reasonable set of points that generally leads to satisfactory
skeleton constructions.
[34] The program ‘‘Triangle’’ developed by Shewchuk

[1996] is used to compute the Delaunay triangulation and
the Voronoi diagram. The incircle test mentioned in section
2.1 is then applied to each Delaunay/Voronoi edge pair and
skeleton line segments are grouped to form the set of
skeleton stem segments (obtained from couples of Delaunay
triangles having the common side with endpoints spanning
on adjacent contour lines) and the set of skeleton branch
segments (obtained from couples of Delaunay triangles

having the common side with both endpoints lying on the
same contour line). Skeleton stem segments having a shared
endpoint are connected to form polylines. Each of these
polylines is stored in an array using the same rule adopted
for contour lines and is labeled conventionally with the
mean of the upper and lower adjacent contour line eleva-
tions to define its location (Figure 3a). Skeleton branches
are connected to form tree structures originating at points
lying on the skeleton stems or on closed contour lines
(Figures 3a and 3d). By relying on an ordered set of
skeleton stems and skeleton branches, the method described
in sections 2.3 and 2.4 can readily be applied.

3. Method Evaluation

[35] The methods described in section 2 are evaluated
through their application to real terrains. A brief description
of the terrains and of the data used to represent their
morphology is reported in section 3.1. Evaluation criteria
are defined in section 3.2. Section 3.3 presents the analysis
carried out and the obtained results.

3.1. Study Areas and Elevation Data

[36] The real terrains considered in this study are referred
to as the Ca’ Lita area (Northern Italian Apennines, Reggio
Emilia, Italy; Figures 4, 5, and 7) and the Col Rodella area
(Eastern Italian Alps, Trento, Italy; Figure 8). The center of
the Ca’ Lita area framed in Figures 4, 5, and 7 has latitude
44�2703100N and longitude 10�3803800E. In this area, the
geologic substratum is constituted by clay shales of marine
origin. Clay-rich soils are mostly covered by bush and
grass. The topography can be described as fairly complex
as a result of surface water erosion and active landsliding.
Unchanneled hillside swales are not uncommon because of
widespread slope deformation and movement. The eleva-
tion ranges from 323.8 to 472.0 m asl with an average of
393.8 m asl. The average terrain slope is 31.9%. The center
of the Col Rodella area framed in Figure 8 has latitude
46�2903900N and longitude 11�4502300E. In this area, the
sedimentary bedrock, primarily of limestone, crops out
widely and shallow immature soils cover a steep and regular
topography where only grass grows because of the altitude.
Because of their coarse texture, soils are less vulnerable to
surface water erosion compared to the previous case, and not
at all affected by slope instability phenomena. The elevation
ranges from 1836.7 to 2536.4 m asl with an average of
2201.4 m asl. The average terrain slope is 59.3%.
[37] The digital topography of the Ca’ Lita and Col

Rodella areas was generated from lidar surveys carried out
by Helica (Italy) and Terrapoint (United States), respectively.
The survey in the Ca’ Lita area was carried out using an
Optech ALTM (airborne lidar terrain mapping) system
mounted on a helicopter. The flight altitude was about
800 m agl (above ground level) and the acquisition
parameters were set to obtain an average data density of
about 2.9 points per square meter. The positions of land
surface points (determined with absolute accuracy of about
0.4 m and 0.15 m, in the horizontal and vertical coordinate,
respectively) were elaborated to provide 0.5-m resolution
gridded elevation data. The survey in the Col Rodella area
was carried out using an ALTM system of Terrapoint’s
proprietary design mounted on a fixed-wing aircraft. The
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flight altitude was about 1000 m agl and the acquisition
parameters were set to obtain an average data density of
about 0.5 points per square meter. The positions of land
surface points (determined with absolute accuracy of about
1 m and 0.3 m, in the horizontal and vertical coordinate,
respectively) were elaborated to provide 1-m resolution
gridded elevation data. Gridded elevation data were
resampled to 5-m and contour elevation data with contour
intervals of 1, 5, 10, 20, and 50 m were generated. The
obtained data were found to offer a suitable balance between
detail in the description of the terrain topography and
smoothness of the derived contour lines, the latter being a
desirable factor for computationally inexpensive skeleton
construction.

3.2. Evaluation Criteria

[38] The capability of the methods described in section 2
is evaluated by verifying (visually) whether the drainage

divides automatically delineated from contour elevation
data of real terrains conform with the general principles
that would be applied by solving the same problems
manually. This evaluation criterion must be qualified by
the fact that in terrain analysis the accuracy of (digital)
topographic data is a critical factor affecting the extraction
of primary and secondary attributes [e.g., Wilson and
Gallant, 2000, p. 15]. The description of the ‘‘true topog-
raphy’’ of a real terrain is an ideal process that can be
reached only by using infinitely accurate instruments and
techniques along with infinitesimal elevation model reso-
lutions. In fact, real topographic data are always approx-
imations of the ‘‘true topography’’ because of uncertainties
in the use of instruments and techniques along with obvious
practical constraints in elevation model resolution. Lidar
(light detection and ranging) technology is able to provide
much more information than can be acquired by virtually any
other means, at least within economic reason [Terrapoint
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Figure 7. Delineation of drainage basins DB1, DB2, and DB3 in the Ca’ Lita area (44�2703100N,
10�3803800E) using (a and c) the proposed method and (b and d) the current state-of-the-art method with
data at different contour intervals (10 m in Figures 7a and 7b and 20 m in Figures 7c and 7d). The
reference solutions, obtained using 1-m contour data and the proposed method, are reported (in dashed
lines) to facilitate comparisons. The datum is mean sea level.
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USA Inc., 2005]. To investigate in some way the relative role
of data and method accuracy in the delineation of drainage
basins, contour elevation data with different contour inter-
vals are derived in this study from lidar surveys as mentioned
in section 3.1, and results obtained from the application of
the proposed method are compared with those obtained by
applying a ‘‘state-of-the-art method’’ incorporating the rele-
vant concepts and techniques currently in use [e.g., Moore
et al., 1988; Dawes and Short, 1994; Maunder, 1999;
Menduni et al., 2002]. Both the current state-of-the-art and
proposed methods are essentially based on the same general
principle (i.e., minimum distance searching upslope men-
tioned in section 1), the essential difference between the two
being that the second exploits the skeleton of contour lines as
a means for reconstructing a plausible morphology of the
terrain lying within adjacent contour lines or within a closed
contour line whereas the first does not (section 2.3, Figures 4
and 5).

[39] The improvement in the delineation of drainage
basins offered by the proposed method with respect to the
current state-of-the-art method can also be evaluated nu-
merically by considering the areas A1, A2, and A3 shown in
Figure 9. In Figure 9, two drainage basin determinations
briefly denoted as ‘‘DBD1’’ and ‘‘DBD2’’ are sketched.
DBD1 and DBD2 are obtained by considering the same
draining line segment connecting two assigned points (PL

and PR), but by different methods. Area A1 is the portion of
DBD1 that does not belong to DBD2. Area A2 belongs to
both DBD1 and DBD2 (intersection). Area A3 is the portion
of DBD2 that does not belong to DBD1. Areas of DBD1
and DBD2 are A1 + A2 and A2 + A3, respectively, the
overlapping area is A2, and the nonoverlapping areas are A1

and A3. Areas A1, A2, and A3 allow one to define two types
of errors, both relative to the area of DBD1 (A1 + A2), which
is taken as reference. The type 1 relative error j(A2 + A3) �
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Figure 8. Delineation of drainage basins DB4, DB5, and DB6 in the Col Rodella (46�2903900N,
11�4502300E) area using (a and c) the proposed method and (b and d) the current state-of-the-art method
with data at different contour intervals (20 m in Figures 8a and 8b and 50 m in Figures 8c and 8d). The
reference solutions, obtained using 1-m contour data and the proposed method, are reported (in dashed
lines) to facilitate comparisons. The datum is mean sea level.
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(A1 + A2) j/(A1 + A2) accounts for the absolute difference
between the areas of DBD1 and DBD2 and is given by

E1 ¼
jA1 � A3j
A1 þ A2

: ð1Þ

[40] The type 2 relative error accounts for the total
nonoverlapping area (A1 + A3) and is given by

E2 ¼
A1 þ A3

A1 þ A2

: ð2Þ

[41] One can note that error E1 is just an indicator of the
absolute difference between the drainage areas of DBD1 and
DBD2, independently on the location of these two basin
determinations, whereas error E2 also accounts for the
nonoverlapping between the two basin determinations.
Since A1 + A3 
 jA1 � A3j, it follows that E2 
 E1. If both
the areas and locations of DBD1 and DBD2 differ, then both
errors E1 and E2 are greater than zero. If DBD1 and DBD2
have the same drainage area (A1 + A2 = A2 + A3), but
different locations, then error E1 is equal to zero (A3 = A1)
and error E2 is greater than zero, since A1 > 0 and A3 > 0. If
DBD1 and DBD2 overlap perfectly, then errors E1 and E2

are both equal to zero, since A1 = 0 and A3 = 0.

3.3. Analysis and Results

[42] Among all the generated sets of contour lines
mentioned in section 3.1, that having contour interval of
1 m is expected to provide the best approximation of the
true terrain topography. Accordingly, the solution obtained
by using 1-m contour data and the proposed method is
taken as a point of reference for evaluating the other
solutions obtained by varying either the contour interval
or the method. Six test case drainage basins are considered.
Three of them, denoted as DB1, DB2, and DB3, are
located in the Ca’ Lita area (Figures 4, 5, and 7), whereas
the other three, denoted as DB4, DB5, and DB6, are
located in the Col Rodella area (Figure 8). The drainage
areas of DB1, DB2, DB3, DB4, DB5, and DB6, are
11,982.6, 19,175.6, 43,718.7, 298,688.1, 68,417.2, and

179,286.6 m2, respectively. These six drainage basins
provide a sufficiently large set of test cases for the purpose
of the present study, which is to illustrate the salient
features of the proposed method for different geomorpho-
logical settings. A first test is carried out by delineating the
drainage basins DB1, DB2, and DB3 in the Ca’ Lita area
using 1-m contour data (Figures 4 and 5). To highlight the
capability of the proposed method, the delineation of
drainage basins DB1, DB2, and DB3 in the Ca’ Lita area
is carried out by using contour elevation data with contour
intervals greater than 1 m. Results obtained by using 10-m
and 20-m contour data are shown in Figure 7. The
delineation of the drainage basins DB4, DB5, and DB6
in the Col Rodella area by using 20-m and 50-m contour
data are shown in Figure 8. The reference solutions,
obtained by using 1-m contour data and the proposed
method, are reported (in dashed lines) in Figures 7 and
8 to facilitate comparisons. Errors E1 and E2 are evaluated
for the six test case drainage basins by considering the
application of the current state-of-the-art and proposed
methods to contour elevation data with contour interval
of 1, 5, 10, 20, and 50 m. Results are shown in Figure 10.
[43] The computational burden imposed by the proposed

method can be evaluated by considering separately the two
contributions to total central processing unit (CPU) time
required for (1) skeleton extraction from contour lines and
(2) drainage basin delineation or flow net construction. The
CPU time required to extract the skeleton from contour
lines rapidly decreases as contour interval increases. Using
an Intel Core 2 Duo 6700 processor, the CPU time required
to extract the skeleton from contour lines representing the
area framed in Figures 4 and 7 decreases form 2.43 h to
5.0 min as the contour interval increases from 1 (Figure 4)
to 10 m (Figure 7a). The CPU time required to delineate a
simple drainage basin is of the order of a few seconds for
both proposed and current state-of-the-art methods. How-
ever, if 1-m contour data are used and specific checks are
made in order to attempt to solve complex topographic
structures (such as those shown in Figure 4) using the
current state-of-the-art method, the CPU time may go
beyond 1 h (and accurate results are not always achieved).
In this context, the computational burden imposed by
skeleton extraction from contour lines appears quite bear-
able. In scientific studies, CPU times of the order of a few
hours appear acceptable in exchange for (accurate) solu-
tions from fine resolution elevation data. In technical
applications, CPU times of the order of a few minutes
appear acceptable in exchange for accurate solutions from
coarse resolution elevation data.

4. Discussion and Conclusions

[44] The use of the skeleton of a set of contour lines offers
important improvements in the delineation of drainage
basins and construction of flow nets over solutions provided
by the current state-of-the-art method. First, divide elements
between each pair of adjacent contour lines can normally be
determined in such a way as to ensure the perpendicularity
to both the upper and lower contour lines (bottom inset in
Figures 4 and 5 and Figure 6). This capability allows for a
higher accuracy in the delineation of drainage basins and
ensures the uniqueness of the solution with respect to the
use of an upslope or downslope searching algorithm.

Figure 9. Comparison between drainage basin determina-
tions ‘‘1’’ and ‘‘2’’ (DBD1 and DBD2, respectively)
obtained by applying two different methods.
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Secondly, critical topographic structures such as ridges,
saddles, and peaks are solved more accurately by exploiting
the skeleton structure (top insets in Figures 4 and 5 and
Figure 6). The skeleton structure allows morphological
features that may be recognized by human discernment on
the basis of a set of contour lines to be explicitly revealed
and incorporated in a computer program. Thirdly, full
automation in the analysis of contour elevation data is
achieved by relying on the skeleton structure, since recur-
sive algorithms of the kind presented in section 2.3 are not
always successful over a set of contour lines alone. The
degree of automation allowed by the proposed method was
tested on some real cases and it is highlighted in the
examples of flow net construction shown in Figure 6.
[45] Drainage divides obtained from the proposed method

conform with the general principles that would be applied
by an expert hydrologist in solving the same problems
manually. Results obtained using 1-m contour data are
totally satisfactory (Figure 4) and provide some improve-
ments with respect to the results obtained by applying the
current state-of-the-art method (Figure 5). The improve-
ments offered by the new method are even more significant
for the contour elevation data with contour intervals of 5, 10,
20, and 50 m (Figures 7, 8, and 10). One can note that the
gain in accuracy is not only due to the skeleton stems as a
sort of contour data enrichment, but also to the methodo-
logical advance allowed by a profitable use of the entire
skeleton structure (stems and branches). In fact, the solution
provided by the proposed method using 20-m contour data
(Figure 7c) is more accurate than the solution provided by
the current state-of-the-art method using 10-m contour data
(Figure 7b). The results obtained for the drainage basins
DB4, DB5, and DB6 in the Col Rodella area confirm these
conclusions (Figure 8).
[46] The comparison between drainage basin determi-

nations obtained by varying the contour interval of
contour elevation data reveals that relative errors with
respect to the reference solution (obtained using 1-m

contour data and the proposed method) generally increase
as the contour interval increases (Figures 7, 8, and 10).
However, in the cases of the drainage basins DB1 and
DB6 (Figures 10a and 10f, respectively), the solution
provided by the proposed method in 50-m contour data
is closer to the reference solution than the solution
obtained in 20-m contour data. This fact indicates that
the role played by the detail in the topographic represen-
tation of a terrain is not always susceptible to quantifica-
tion. More importantly, relative errors in the delineation of
drainage basins are connected to terrain complexity as
indicated, for instance, by the degree of ramification
(branching) of the skeleton. In this perspective, the greater
complexity of the Ca’ Lita area (Figure 7) with respect to
the Col Rodella area (Figure 8) explains, at least in part,
the larger relative errors obtained for drainage basins
DB1, DB2, and DB3 (Figures 10a, 10b, and 10c, respec-
tively) with respect to those obtained for drainage basins
DB4, DB5, and DB6 (Figures 10d, 10e, and 10f, respec-
tively). As a general indication, using the proposed
method and contour elevation data with contour intervals
of 5–50 m, relative errors in the delineation of drainage
basins are estimated to be normally less 20% and rarely
greater than 50% (Figure 10).
[47] The conclusions of the present study are summarized

as follows: (1) the proposed method allows fully automated
delineations of drainage basins and constructions of flow
nets from contour elevation data, even when critical topo-
graphic structures such as ridges, saddles, and peaks are
present; (2) for any given set of contour lines, the proposed
method provides more accurate solutions than previously
proposed methods, the gain in accuracy normally increasing
as the contour interval increases; and (3) skeleton construc-
tion techniques allow the morphological information im-
plicitly present in contour elevation data to be explicitly
revealed and correctly processed by a computer program,
and are a useful means for improving the accuracy with
which physiographic features of drainage basins are deter-

Figure 10. Type 1 and type 2 relative errors for the current state-of-the-art method (denoted here as
CM) and the proposed method (PM) using contour elevation data at different contour intervals. Drainage
basins (a) DB1, (b) DB2, and (c) DB3 in the Ca’ Lita area and drainage basins (d) DB4, (e) DB5, and
(f) DB6 in the Col Rodella area are considered.
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mined. The proposed methods can be used to advance the
delineation of drainage basins and the construction of flow
nets (as outlined in this paper), and to test the reliability of
algorithms in the analysis of more efficient and straightfor-
ward, gridded or triangulated, elevation data (as will be
shown in a future companion paper).

5. Availability

[48] The FORTRAN 90 codes that implement the meth-
ods presented in this paper are freely available from the
authors under the GNU General Public License agreement.
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